In this note the maximization of the expected terminal wealth for the setup of quadratic transaction costs is considered. First, a very simple probabilistic solution to the problem is provided. Although the problem was largely studied, as far as authors know up to date this simple and probabilistic form of the solution has not appeared in the literature. Next, the general result is applied for the numerical study of the case where the risky asset is given by a fractional Brownian motion and the information flow of the investor can be diversified.
The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.
The so-called multi-mixed fractional Brownian motions (mmfBm) and multi-mixed fractional Ornstein–Uhlenbeck (mmfOU) processes are studied. These processes are constructed by mixing by superimposing or mixing (infinitely many) independent fractional Brownian motions (fBm) and fractional Ornstein–Uhlenbeck processes (fOU), respectively. Their existence as ${L^{2}}$ processes is proved, and their path properties, viz. long-range and short-range dependence, Hölder continuity, p-variation, and conditional full support, are studied.
In this paper the study of a three-parametric class of Gaussian Volterra processes is continued. This study was started in Part I of the present paper. The class under consideration is a generalization of a fractional Brownian motion that is in fact a one-parametric process depending on Hurst index H. On the one hand, the presence of three parameters gives us a freedom to operate with the processes and we get a wider application possibilities. On the other hand, it leads to the need to apply rather subtle methods, depending on the intervals where the parameters fall. Integration with respect to the processes under consideration is defined, and it is found for which parameters the processes are differentiable. Finally, the Volterra representation is inverted, that is, the representation of the underlying Wiener process via Gaussian Volterra process is found. Therefore, it is shown that for any indices for which Gaussian Volterra process is defined, it generates the same flow of sigma-fields as the underlying Wiener process – the property that has been used many times when considering a fractional Brownian motion.
The existence of the bifractional Brownian motion ${B_{H,K}}$ indexed by a sphere when $K\in (-\infty ,1]\setminus \{0\}$ and $H\in (0,1/2]$ is discussed, and the asymptotics of its excursion probability $\mathbb{P}\left\{{\sup _{M\in \mathbb{S}}}{B_{H,K}}(M)>x\right\}$ as $x\to \infty $ is studied.
is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
We find the best approximation of the fractional Brownian motion with the Hurst index $H\in (0,1/2)$ by Gaussian martingales of the form ${\textstyle\int _{0}^{t}}{s^{\gamma }}d{W_{s}}$, where W is a Wiener process, $\gamma >0$.
We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.
We investigate the fractional Vasicek model described by the stochastic differential equation $d{X_{t}}=(\alpha -\beta {X_{t}})\hspace{0.1667em}dt+\gamma \hspace{0.1667em}d{B_{t}^{H}}$, ${X_{0}}={x_{0}}$, driven by the fractional Brownian motion ${B^{H}}$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters α and β in the non-ergodic case (when $\beta <0$) for arbitrary ${x_{0}}\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular ${x_{0}}=\alpha /\beta $, derive their asymptotic distributions and prove their asymptotic independence.