A time continuous statistical model of chirp signal observed against the background of stationary Gaussian noise is considered in the paper. Asymptotic normality of the LSE for parameters of such a sinusoidal regression model is obtained.
The object of investigation is the mixed fractional Brownian motion of the form ${X_{t}}=\kappa {B_{t}^{{H_{1}}}}+\sigma {B_{t}^{{H_{2}}}}$, driven by two independent fractional Brownian motions ${B_{1}^{H}}$ and ${B_{2}^{H}}$ with Hurst parameters ${H_{1}}\lt {H_{2}}$. Strongly consistent estimators of unknown model parameters ${({H_{1}},{H_{2}},{\kappa ^{2}},{\sigma ^{2}})^{\top }}$ are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for $0\lt {H_{1}}\lt {H_{2}}\lt \frac{3}{4}$.
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
Principal Component Analysis (PCA) is a classical technique of dimension reduction for multivariate data. When the data are a mixture of subjects from different subpopulations one can be interested in PCA of some (or each) subpopulation separately. In this paper estimators are considered for PC directions and corresponding eigenvectors of subpopulations in the nonparametric model of mixture with varying concentrations. Consistency and asymptotic normality of obtained estimators are proved. These results allow one to construct confidence sets for the PC model parameters. Performance of such confidence intervals for the leading eigenvalues is investigated via simulations.
In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.
Cox proportional hazards model with measurement errors is considered. In Kukush and Chernova (2017), we elaborated a simultaneous estimator of the baseline hazard rate $\lambda (\cdot )$ and the regression parameter β, with the unbounded parameter set $\varTheta =\varTheta _{\lambda }\times \varTheta _{\beta }$, where $\varTheta _{\lambda }$ is a closed convex subset of $C[0,\tau ]$ and $\varTheta _{\beta }$ is a compact set in ${\mathbb{R}}^{m}$. The estimator is consistent and asymptotically normal. In the present paper, we construct confidence intervals for integral functionals of $\lambda (\cdot )$ and a confidence region for β under restrictions on the error distribution. In particular, we handle the following cases: (a) the measurement error is bounded, (b) it is a normally distributed random vector, and (c) it has independent components which are shifted Poisson random variables.
Stationary processes have been extensively studied in the literature. Their applications include modeling and forecasting numerous real life phenomena such as natural disasters, sales and market movements. When stationary processes are considered, modeling is traditionally based on fitting an autoregressive moving average (ARMA) process. However, we challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1) characterization in modeling any strictly stationary processes. Moreover, we derive consistent and asymptotically normal estimators of the corresponding model parameter.
We consider a multivariate functional measurement error model $AX\approx B$. The errors in $[A,B]$ are uncorrelated, row-wise independent, and have equal (unknown) variances. We study the total least squares estimator of X, which, in the case of normal errors, coincides with the maximum likelihood one. We give conditions for asymptotic normality of the estimator when the number of rows in A is increasing. Under mild assumptions, the covariance structure of the limit Gaussian random matrix is nonsingular. For normal errors, the results can be used to construct an asymptotic confidence interval for a linear functional of X.
We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.